Wireless
Avago Technologies Enables WiFi and Bluetooth Coexistence in Mobile Electronics with New Highly-Integrated Front-End Module
Small-Footprint Module Incorporates FBAR Filtering, Antenna Switch and Path Coupler Technology with Best-in-Class Noise Rejection and Signal Loss
AvagAvago front-end modules integrate multiple high-performance technologies to reduce PCB board footprint and simplify design for portable electronics applications. The AFEM-S102 module exhibits low insertion loss that combines with high noise rejection to meet stringent coexistence requirements and enable fewer interference issues between WiFi, Bluetooth and other radios. Effectively leveraging Avago 0.25 µm GaAs enhancement-mode pHEMT process and its leading-edge proprietary FBAR filtering technologies, the module delivers 2.6 dB maximum insertion loss for the TX path and 35 dB rejection in the 2110-2170 MHz range.
“As smartphones and other portable electronics devices add more radio types and bands, coexistence requirements are getting more stringent,” said James Wilson, director of marketing for wireless products at Avago. “The best-in-class rejection and insertion loss of our proprietary FBAR technology enables OEMs to efficiently address these challenging radio environments. The easy-to-use AFEM-S102 front-end module was designed in conjunction with a leading handset designer for their reference design, specifically to meet the coexistence requirements for WiFi and Bluetooth applications.”
Avago FBAR technology delivers steeper roll-off and lower insertion loss than ceramic or SAW filters and other competing technologies, and does so in a more compact form factor. Low insertion loss reduces power amplifier current and improves receiver sensitivity and dynamic range, resulting in extended battery life and talk time and better signal quality for handsets. FBAR technology makes ultra-small, high-Q filters possible at a fraction of their usual size, and allows integration with other radio components.
Additional AFEM-S102 Product Features
• All RF ports matched to 50 ohms for simplified design
• TX, RX, BT and ANT ports DC blocked
• -18dB TX directional coupling
• -30° to +85° C operation