Pending

Imec and partners start work on EU project PRIMA to improve solar cell efficiency through nanostructures

30th March 2010
ES Admin
0
Imec announces that it has started work, together with its project partners, on PRIMA, a project under the EU’s 7th framework program for ICT (FP7). The project’s goal is to improve the efficiency and cost of solar cells though the use of metallic nanostructures. Next to imec, the project coordinator, the partners involved in PRIMA are Imperial College (London, UK), Chalmers University of Technology (Sweden), Photovoltech (Belgium), Quantasol (UK) and Australian National University (Australia).
Certain nanostructured metallic surfaces show unique characteristics: they can absorb and intensify light at specific wavelengths. This is because the incoming light results in a collective oscillation of the electrons at the metal’s surface. This phenomenon, studied under the name plasmonics, has many promising applications. It can be exploited to transmit optical signals through nanosized interconnects on chips, in nanoparticles that recognize and interact with biomolecules, or in solar cells.

With solar cells, metallic nanostructures can boost the absorption of light into the cell’s photoactive material. And with an enhanced light absorption, it is possible to produce cells with less base material, thus thinner and cheaper cells. Metal nanostructures can improve the absorption in various types of cells, for example crystalline Si cells, cells based on high-performance III-V semiconductors, or organic and dye-sensitized solar cells.
The aim of the FP7 project PRIMA is twofold. First, the project wants to gain insight into the physical mechanisms of metallic nanostructures, and in how they can improve the light absorption of the solar cell’s material. Second, the project’s partners want to study how these structures can best be integrated into the production of solar cells. For this, they will test a number of structures, benchmarking them against state-of-the-art solar cells. The performance and applicability of these cells will then be assessed by solar cell companies that are participating in the project.

European science traditionally is a leader in both the fields of photovoltaics and plasmonics and this project helps to maintain Europe's strong position. Moreover it provides the participating industrial partners with a competitive advantage, which should create employment and sustainable economic growth in Europe, while simultaneously contributing to a reduction of the emission of greenhouse gases.

Featured products

Upcoming Events

View all events
Newsletter
Latest global electronics news
© Copyright 2024 Electronic Specifier