Germanium waveguide EAM demonstrated at OFC
At OFC 2015, imec, together with its lab at Ghent University (Intec) and Stanford University, demonstrated a compact germanium waveguide Electro-Absorption Modulator (EAM) with a modulation bandwidth beyond 50GHz. Combining state-of-the-art extinction ratio and low insertion loss with capacitance of just 10fF, the EAM marks an important milestone for the realisation of next-gen silicon integrated optical interconnects at 50Gb/s and beyond.
Future chip-level optical interconnects require integrated optical modulators with stringent requirements for modulation efficiency and bandwidth, as well as for footprint and thermal robustness. In the presented work, imec and its partners have improved Ge EAMs on Si, realising higher modulation speed, higher modulation efficiency and lower capacitance.
This was obtained by fully leveraging the strong confinement of the optical and electrical fields in the Ge waveguides, as enabled in imec’s 200mm Silicon Photonics platform. The EAM was implemented along with various Si waveguide devices, highly efficient grating couplers, various active Si devices, and high speed Ge photodetectors, paving the way to industrial adoption of optical transceivers based on this device.
Companies can benefit from imec’s Silicon Photonics platform (iSiPP25G) through established standard cells, or by exploring the functionality of their own designs in multi-project wafer runs. The iSiPP25G technology is available via ICLink services and MOSIS, a provider of low-cost prototyping and small volume production services for custom ICs.
“This achievement is a milestone for realising silicon optical transceivers for datacomms applications at 50Gb/s and beyond,” stated Joris Van Campenhout, Programme Director, imec. “We have developed a modulator that addresses the bandwidth and density requirements for future chip-level optical interconnects.”