A potentially life-saving health monitor technology
Sick babies in remote parts of the world could be monitored from afar thanks to new wearable technology designed by physicists at the University of Sussex. And parents at home, concerned about the risk of cot death, could keep track of their new babies' heart and breathing rates with automatic updates to their smart phones, using 'fitness tracker'-style technology built into baby sleep suits.
The unobtrusive sensors - the most sensitive liquid-based devices to have ever been developed - could also be transformative for anyone with life-threatening conditions such as sleep apnea. In addition, because graphene is cheap to produce, the new breakthrough should be affordable.
Professor Alan Dalton, from the School of Mathematics and Physical Sciences, and his team of physicists at the University of Sussex have created a liquid made from an emulsion of graphene, water and oil, which conducts electricity.
The breakthrough is described in a paper published in the peer-reviewed Royal Society of Chemistry journal Nanoscale. A prototype has been created and the team are talking to commercial sponsors to fund further research so that the product can be brought to market.
The team were inspired to create this new health monitor after the Bill and Melinda Gates Foundation called for new affordable wearable health technologies for babies in situations where resources are scarce.
Graphene is a two-dimensional material made from carbon atoms that is strong, flexible and conductive. When a channel or tube holding the liquid is stretched, even by a small amount, the conductivity of the liquid changes. This means that the respiration rates and pulses of people wearing the device can be tracked.
Because the new liquid technology is so sensitive, it picks up very small signals when attached to the body. In order to monitor the pulses of babies at the moment, clunky sensors need to be attached to babies' tiny feet or hands, which often fall off. The information is then relayed to a monitor by wires which can restrict the child's movement.
Professor Dalton's technological development would see the monitoring done wirelessly and non-invasively with a 'fitness tracker'-like band - or even embedded within the fabric of a sensor vest for the baby to wear.
Discover more here.
Image credit: University of Sussex