Quantum Tech
Single photons can be reliably imprinted with quantum information
Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. The invention will benefit a variety of processes which rely on photons to carry quantum information, such as quantum computing, secure quantum communication and precision measurements at low light levels. Photons, particles of light, can be imprinted with information to be used for thin...
Alternative storage concepts for better quantum memories
Conventional memories used in today’s computers only differentiate between the bit values 0 and 1. In quantum physics, however, arbitrary superpositions of these two states are possible. Most of the ideas for new quantum technology devices rely on this “Superposition Principle”. One of the main challenges in using such states is that they are usually short-lived. Only for a short period of time can information be read out of qua...
Technology lights the way for quantum computing
Researchers at Tyndall National Institute develop scalable, electrically driven photon sources to drive powerful quantum technologies. Quantum computing is heralded as the next revolution in terms of global computing. Google, Intel and IBM are just some of the big names investing millions currently in the field of quantum computing which will enable faster, more efficient computing required to power the requirements of our future computing n...
Precise quantum cloning secures communication
Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits. A global race is on to use quantum physics for ultra-secure encryption over long distances according to Prof Ping Koy Lam, node director of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at ANU.
Quantum leap in mass spectrometry-based proteomics
Modern mass spectrometry systems enable scientists to routinely determine the quantitative composition of cells or tissue samples. However, different analysis software packages often produce different results from the same raw data. An international team of researchers led by Professor Stefan Tenzer from the Mainz University Medical Center has now addressed this problem.
The quantum sniffer dog
As humans, we sniff out different scents and aromas using chemical receptors in our noses. In technological gas detection, however, there are a whole host of other methods available. One such method is to use infrared lasers, passing a laser beam through the gas to an adjacent separate detector, which measures the degree of light attenuation it causes.
Quantum liquid on crystal surface inspires future electronics
For the first time, an experiment has directly imaged electron orbits in a high-magnetic field, illuminating an unusual collective behaviour in electrons and suggesting new ways of manipulating the charged particles. The study, conducted by researchers at Princeton University and the University of Texas-Austin was published in the journal Science.
Class of materials could realise quantum computers
Scientists at EPFL and PSI have discovered a new class of materials that can prove ideal for the implementation of spintronics. Electron spin generally refers to the rotation of electrons around their axis. In a material electrons also orbit the atom's nucleus. When these two electron motions, spin and orbit interact, they locally produce a very strong magnetic field. As such, spin is used in MRI, NMR spectroscopy, and hard drives.
3D wiring technique could make quantum computers possible
Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.
Effective reflection of light for quantum technology
Researchers at the Niels Bohr Institute, Copenhagen, Denmark, have announced the development of a method for ultra-effective reflection of light at an atomic scale. Light usually spreads out in all directions and when the light hits an object, it is reflected and is scattered even more. So light is normally quite uncontrollable. But researchers want to be able to control light all the way down to the atomic level in order to develop future q...