Component Management
The fine-tuning of 2D materials
A new understanding of why synthetic 2D materials often perform orders of magnitude worse than predicted was reached by teams of researchers led by Penn State. They searched for ways to improve these materials' performance in future electronics, photonics, and memory storage applications. Two-dimensional materials are films only an atom or two thick.
Hydrogen extraction could be game-changer
Researchers at KTH have successfully tested a new material that can be used for cheap and large-scale production of hydrogen – a promising alternative to fossil fuel. Precious metals are the standard catalyst material used for extracting hydrogen from water. The problem is these materials - such as platinum, ruthenium and iridium - are too costly to make the process viable. A team from KTH Royal Institute of Technology recently announc...
Semiconducting polymers for future devices
Scientists at Tokyo Tech have successfully developed n-type semiconducting copolymers with high electron mobilities. They investigated their properties and their effectiveness for thin-film transistors, obtaining highly promising results. Semiconducting polymers have numerous potential applications in modern technological devices owing to their low cost, low weight, and flexibility.
Tool helps bioengineers to build microbial teams
Researchers at Duke University have created a framework for helping bioengineers determine when to use multiple lines of cells to manufacture a product. The work could help a variety of industries that use bacteria to produce chemicals ranging from pharmaceuticals to fragrances. The research was published in the Proceedings of the National Academy of Sciences.
Coloured bacteria could develop paints and coatings
Researchers have unlocked the genetic code behind some of the brightest and most vibrant colours in nature. The paper, published in the journal PNAS, is the first study of the genetics of structural colour - as seen in butterfly wings and peacock feathers - and paves the way for genetic research in a variety of structurally coloured organisms.
Smart material changes stiffness when twisted or bent
A smart and responsive material can stiffen up like a worked-out muscle, say the Iowa State University engineers who developed it. Stress a muscle and it gets stronger. Mechanically stress the rubbery material – say with a twist or a bend – and the material automatically stiffens by up to 300%, the engineers said. In lab tests, mechanical stresses transformed a flexible strip of the material into a hard composite that can support...
The heart of carbon nanotube clusters
Integrating nanoscale fibres such as carbon nanotubes (CNTs) into commercial applications, from coatings for aircraft wings to heat sinks for mobile computing, requires them to be produced in large scale and at low cost. Chemical vapor deposition (CVD) is a promising approach to manufacture CNTs in the needed scales, but it produces CNTs that are too sparse and compliant for most applications.
Wake up to a delicious laser-induced graphene on toast
Rice University scientists who introduced laser-induced graphene (LIG) have enhanced their technique to produce what may become a new class of edible electronics. The Rice lab of chemist James Tour, which once turned Girl Scout cookies into graphene, is investigating ways to write graphene patterns onto food and other materials to quickly embed conductive identification tags and sensors into the products themselves.
Reduce waste and increase production
CP Automation now supplies SmartMotion web guide controllers from converting industry component manufacturer, RE-spa. The controllers improve feed accuracy and reduce waste for anyone winding, unwinding or printing on paper, aluminium, plastic or card. The SmartMotion controller fuses drive technology with a stepper motor, reducing the amount of wiring and resulting in a single, compact device that can be incorporated into a new machine, or ...
Super wood is stronger than most metals
Engineers at the University of Maryland have found a way to make wood more than ten times times stronger and tougher than before, creating a natural substance that is stronger than many titanium alloys. UMD professors Liangbing Hu and Teng Li each holding a block of wood“This new way to treat wood makes it twelve times stronger than natural wood and ten times tougher,” said Liangbing Hu, the leader of the team that did the resear...