Low power SoC processors with vision acceleration
Texas Instrument’s TDA3x System-on-Chip (SoC) is a highly optimised and scalable family of devices designed to meet the requirements of leading Advanced Driver Assistance Systems (ADAS). The TDA3x family enables broad ADAS applications in automobiles by integrating an optimal mix of performance, low power, smaller form factor and ADAS vision analytics processing that aims to facilitate a more autonomous and collision-free driving experience.
The TDA3x SoC enables sophisticated embedded vision technology in today’s automobile by enabling the industry’s broadest range of ADAS applications including front camera, rear camera, surround view, radar, and fusion on a single architecture.
The TDA3x SoC incorporates a heterogeneous, scalable architecture that includes a mix of TI’s fixed and floating-point TMS320C66x digital signal processor (DSP) generation cores, Vision AccelerationPac (EVE), and dual-Cortex-M4 processors. The device allows low power profile in different package options (including Package-On-Package) to enable small form factor designs. TDA3x SoC also integrates a host of peripherals including multi-camera interfaces (both parallel and serial) for LVDS-based surround view systems, displays, CAN and GigB Ethernet AVB.
The Vision AccelerationPac for this family of products includes embedded vision engine (EVE) offloading the vision analytics functionality from the application processor while also reducing the power footprint. The Vision AccelerationPac is optimized for vision processing with a 32-bit RISC core for efficient program execution and a vector coprocessor for specialized vision processing.
Additionally, Texas Instruments provides a complete set of development tools for the Arm, DSP, and EVE coprocessor, including C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a debugging interface for visibility into source code execution.
The TDA3x ADAS processor is qualified according to AEC-Q100 standard.
To find out more, click here.