Passives
VPG Releases New Generation of Ultra-High-Precision Z-Foil Power Current Sensing Resistors
Vishay Precision Group announce that its Vishay Foil Resistors brand has released new ultra-high-precision Z-Foil power current sensing resistors for applications where rapid ΔR stabilization and resistance stability under transient power conditions are required. Designed to provide optimal performance when mounted on a chassis or cooled heat sink, the VCS331Z, VCS332Z, VFP4Z, and CSNG Series feature low TCR of ±0.2 ppm/°C from -55°C to +125°C, +25°C ref., PCR (ΔR due to self-heating) of 4 ppm/W typical, and tolerances to ±0.01%.
The In applications such as force-balance scales, electronic beam deflection systems, and switching power supplies, accuracy and repeatability are likely to be more important than power handling requirements and depend to a major extent on precision current sense resistors with Kelvin connections, said Yuval Hernik, Senior Director of Application Engineering for VFR. The resistors must have extreme thermal efficiency, well-distributed internal heat from power dissipation, very low thermal EMF, and fast thermal stabilization. All these characteristics, which can be found in the VCS331Z, VCS332Z, VFP4Z, and CSNG, are necessary to prevent errors caused by uneven heat from external sources such as the power amplifiers and other circuit elements.
Many instrumentation circuits depend upon current sense resistors for precision measurements and system controls. The new devices can also be used in lithium-ion battery circuits for alternative energy applications where energy that cannot be harvested must be stored. In state-of-the-art battery management circuits, Bulk Metal® Foil resistors can be used in the measurement of the state-of-charge (SOC) of the battery cells. The characteristics of Li-ion cells complicate SOC measurement, so precise ICs and precision current sense resistors with improved stability and low thermal EMF help to extend battery lifetime.
The Bulk Metal Foil resistor is based on the planar construction of a cold-rolled Ni-Cr foil bonded to a flat ceramic substrate. The monolithic foil, as opposed to the agglomeration of particles in thin film resistors, has a strength and substance independent of the substrate, which gives the metal foil its own specific thermal linear coefficient of expansion (LCE). The foil also has a known and repeatable independent positive temperature coefficient of resistance (TCR). When the foil is bonded to the substrate, it attempts to respond to temperature changes in accordance with its own LCE but is constrained to follow the lower LCE of the ceramic substrate. The resistance change due to the differential LCEs counterbalances the metal's positive TCR for a near-zero net TCR of the resistor. The composite formation with a planar foil structure makes it possible to very accurately etch a pattern into the resistor that is non-inductive and non-capacitive, with low noise and low thermal EMF.
The VCS331Z, VCS332Z, and VFP4Z are differentiated by power rating, thermal EMF, and configuration. The CSNG is a custom version of these resistors that can be uniquely designed and tailor-made to the customer's specific applications and which has already been used by several research institutes and test and measurement companies.
Samples and production quantities of the VCS331Z, VCS332Z, VFP4Z, and CSNG are available now, with lead times of five working days for samples and six weeks for larger orders.