Understanding the purpose of inhibitory neurons
Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory have developed a computational model of a neural circuit in the brain, which could shed light on the biological role of inhibitory neurons — neurons that keep other neurons from firing. The model describes a neural circuit consisting of an array of input neurons and an equivalent number of output neurons.
The circuit performs what neuroscientists call a “winner-take-all” operation, in which signals from multiple input neurons induce a signal in just one output neuron. Using the tools of theoretical computer science, the researchers prove that, within the context of their model, a certain configuration of inhibitory neurons provides the most efficient means of enacting a winner-take-all operation.
Because the model makes empirical predictions about the behavior of inhibitory neurons in the brain, it offers a good example of the way in which computational analysis could aid neuroscience.
The researchers will present their results this week at the conference on Innovations in Theoretical Computer Science. Nancy Lynch, the NEC Professor of Software Science and Engineering at MIT, is the senior author on the paper. She’s joined by Merav Parter, a postdoc in her group, and Cameron Musco, an MIT graduate student in electrical engineering and computer science.
For years, Lynch’s group has studied communication and resource allocation in ad hoc networks — networks whose members are continually leaving and rejoining. But recently, the team has begun using the tools of network analysis to investigate biological phenomena.
“There’s a close correspondence between the behavior of networks of computers or other devices like mobile phones and that of biological systems,” Lynch says. “We’re trying to find problems that can benefit from this distributed-computing perspective, focusing on algorithms for which we can prove mathematical properties.”
In recent years, artificial neural networks — computer models roughly based on the structure of the brain — have been responsible for some of the most rapid improvement in artificial-intelligence systems, from speech transcription to face recognition software.
An artificial neural network consists of “nodes” that, like individual neurons, have limited information-processing power but are densely interconnected. Data are fed into the first layer of nodes.
If the data received by a given node meet some threshold criterion — for instance, if it exceeds a particular value — the node “fires,” or sends signals along all of its outgoing connections.
Each of those outgoing connections, however, has an associated “weight,” which can augment or diminish a signal. Each node in the next layer of the network receives weighted signals from multiple nodes in the first layer; it adds them together, and again, if their sum exceeds some threshold, it fires. Its outgoing signals pass to the next layer, and so on.
In artificial-intelligence applications, a neural network is “trained” on sample data, constantly adjusting its weights and firing thresholds until the output of its final layer consistently represents the solution to some computational problem.
Lynch, Parter, and Musco made several modifications to this design to make it more biologically plausible. The first was the addition of inhibitory “neurons.” In a standard artificial neural network, the values of the weights on the connections are usually positive or capable of being either positive or negative.
But in the brain, some neurons appear to play a purely inhibitory role, preventing other neurons from firing. The MIT researchers modeled those neurons as nodes whose connections have only negative weights.
Lynch, Parter, and Musco’s circuit thus includes feedback: Signals from the output neurons pass to the inhibitory neurons, whose output in turn passes back to the output neurons. The signaling of the output neurons also feeds back on itself, which proves essential to enacting the winner-take-all strategy.
Finally, the MIT researchers’ network is probabilistic. In a typical artificial neural net, if a node’s input values exceed some threshold, the node fires. But in the brain, increasing the strength of the signal traveling over an input neuron only increases the chances that an output neuron will fire. The same is true of the nodes in the researchers’ model. Again, this modification is crucial to enacting the winner-take-all strategy.