University of Illinois
- 507 East Green Street
Champaign, IL 61820
United States of America - 217-333-5010
- http://illinois.edu/
University of Illinois Articles
Protecting precious artefacts by graphene gilding
Gilding is the process of coating intricate artefacts with precious metals. Ancient Egyptians and Chinese coated their sculptures with thin metal films using gilding - and these golden sculptures have resisted corrosion, wear, and environmental degradation for thousands of years. The middle and outer coffins of Tutankhamun, for instance, are gold leaf gilded, as are many other ancient treasures.
Tissue-imaging tech could enable real-time diagnostics
A microscope system can image living tissue in real time and in molecular detail, without any chemicals or dyes, report researchers at the University of Illinois. The system uses precisely tailored pulses of light to simultaneously image with multiple wavelengths. This enables the researchers to study concurrent processes within cells and tissue, and could give cancer researchers a new tool for tracking tumour progression and physicians new ...
Test finds signs of sepsis in a single drop of blood
A new portable device can quickly find markers of deadly, unpredictable sepsis infection from a single drop of blood. A team of researchers from the University of Illinois and Carle Foundation Hospital in Urbana, Illinois, completed a clinical study of the device, which is the first to provide rapid, point-of-care measurement of the immune system’s response, without any need to process the blood.
Plasmonic sensor improves incipient cancer detection
A new plasmonic sensor developed by researchers at the University of Illinois at Urbana-Champaign will serve as a reliable early detection of biomarkers for many forms of cancer and eventually other diseases. The sensor has been proven reliable to detect the presence of the cancer biomarker carcinoembryonic antigen (CEA) to the magnitude of 1 nanogram per milliliter. Most humans carry at least some amounts of CEA with an average range of 3-5...
Now you can 'build your own' bio-bot
For the past several years, researchers at the University of Illinois at Urbana-Champaign have been developing a class of walking "bio-bots" powered by muscle cells and controlled with electrical and optical pulses. Now, Rashid Bashir's research group is sharing the recipe for the current generation of bio-bots. Their how-to paper is the cover article in Nature Protocols.
Light illuminates the way for bio-bots
A new class of miniature biological robots, or bio-bots, has seen the light - and is following where the light shines. The bio-bots are powered by muscle cells that have been genetically engineered to respond to light, giving researchers control over the bots' motion, a key step toward their use in applications for health, sensing and the environment. Led by Rashid Bashir, the University of Illinois head of bioengineering, the researchers publish...
Battery technology could charge up water desalination
The technology that charges batteries for electronic devices could provide fresh water from salty seas, says a new study by University of Illinois engineers. Electricity running through a salt water-filled battery draws the salt ions out of the water. Illinois mechanical science and engineering professor Kyle Smith and graduate student Rylan Dmello published their work in the Journal of the Electrochemical Society.
Indicators automatically highlight microscopic damage
Damage developing in a material can be difficult to see until something breaks or fails. A new polymer damage indication system automatically highlights areas that are cracked, scratched or stressed, allowing engineers to address problem areas before they become more problematic.