Climate change instrument arrives at Harwell Space Cluster
A joint British and French satellite dedicated to monitoring atmospheric carbon dioxide has arrived in the UK where assembly and testing will be completed.
A joint British and French satellite dedicated to monitoring atmospheric carbon dioxide, the main greenhouse gas responsible for climate change, has arrived in the UK where the assembly, integration and testing will be completed.
Called MicroCarb, the mission between the UK Space Agency and the French space agency, CNES, will be the first European satellite dedicated to measuring atmospheric CO2 from all around the world – the main greenhouse gas caused by human activity. The satellite will be a timely contribution to tracking progress with reducing greenhouse gas emissions as required by the Paris Agreement.
Due to launch in 2024 the instrument was built by Airbus France, with pre-flight calibration and validation conducted by the National Physical Laboratory (NPL) in Teddington, before being shipped to the UK where Thales Alenia Space will complete the satellite assembly, integration and testing at the Science and Technology Facility Council’s RAL Space test facilities on the Harwell Space Cluster, in Oxfordshire.
MicroCarb’s data will contribute to global efforts to measure how much carbon is being emitted by natural processes and how much by human activities. This information will help inform decisions on tackling climate change.
The UK Space Agency has invested £13.9 million in the mission.
Dr Paul Bate, Chief Executive of the UK Space Agency, said: "Over half of the critical measurements on climate change rely on satellite data and the information from MicroCarb will be hugely important. Having more accurate knowledge of how much carbon the world’s forests and oceans absorb will provide the reliable information needed to take decisions on tackling climate change.
"It is an exciting moment to see the MicroCarb satellite arrive in the UK. This mission shows what can be achieved when we collaborate with international partners like CNES, bringing the best of our skills and expertise together."
Dr Sarah Beardsley, Director of STFC RAL Space, said: "Achieving Net Zero is one of the most pressing challenges we currently face, and a vital part in reaching our collective goal is to develop systems that can accurately and reliably monitor carbon emissions.
"’m incredibly proud that STFC RAL Space has played such an important role in the development of MicroCarb. The pointing and calibration system that we’ve developed for this mission will enable scientists to analyse the carbon cycle in new levels of fine detail, giving us a fuller and clearer understanding of the processes driving climate change."
Andrew Stanniland, CEO Thales Alenia Space UK, said: "With the climate crisis at the top of the world agenda, I am proud of the fact that Thales Alenia Space is at the heart of this important collaborative mission between the space agencies of France and the UK. The fact that it will be the first satellite our Assembly, Integration and Test team in the UK has fully assembled and integrated only adds to that pride.
"With the climate crisis at the top of the world agenda, I am proud of the fact that Thales Alenia Space is at the heart of this important collaborative mission between the space agencies of France and the UK. The fact that it will be the first satellite our Assembly, Integration and Test team in the UK has fully assembled and integrated only adds to that pride."
The NPL is providing critical pre-launch calibration and validation hardware together with metrological input into the product quality. This calibration is key to the success of the mission and precision and trust in the GHG data the satellite will send back.
NPL CEO Dr Peter Thompson said: "To make informed decisions about climate change we need to have confidence in the systems and data we use to do so. I am delighted that NPL has played such a significant role in the early stages of the MicroCarb mission, leading on the calibration and validation with our state-of-the-art facilities, and that we will continue to be involved in the mission as it progresses by using our measurement capability to input into the downstream data.
"Experts from the National Centre for Earth Observation (NCEO), at the universities of Leicester and Edinburgh, will help develop the core data products and translate observations of atmospheric CO2 into maps that show carbon sources and sinks."
MicroCarb will monitor Earth’s atmospheric CO2 from space with extreme precision and detect the changes associated with surface emissions and uptake across the world from our cities, forests and oceans. An important feature of the satellite is its special city-scanning observing mode that will allow us to map the CO2 distribution across urban areas, which are responsible for the majority of global emissions, and support efforts to reduce emissions.
Data from MicroCarb will help monitor international progress in meeting the Paris Agreement climate target of limiting global surface warming to well below 2ºC of pre-industrial temperatures.
Professor Paul Palmer, UK Lead MicroCarb Scientist and NCEO Science Director, said: "Data from MicroCarb will play a crucial role in extending our current ability to verify reductions in global and national emissions of CO2 in response to the demands of the Paris Agreement.
"Cities are home to half of the world’s population and are therefore at the forefront of the global challenge to reduce emissions of GHGs. The city-scan observing mode of MicroCarb, which can map out atmospheric CO2 over cities the size of London and Paris, will provide new information to help cities implement strategies that support sustainable urban development."
UK expertise
Thales Alenia Space in the UK is responsible for the Platform Assembly, Integration and Test (AIT), Satellite AIT and Launch Preparation.
Experts at the National Physical Laboratory (NPL) are providing critical pre-launch calibration and validation hardware together with applying the metrological principles to the measured CO2 concentrations, fluxes and sources and sinks attribution through understanding how the instrument and observation aspects contribute to the data use. This calibration and validation work is key to the success of the mission and precision and trust in the GHG data the satellite will send back.
STFC RAL Space have designed and built the Pointing and Calibration System (PCS) for MicroCarb, feeding the light from the Earth or from calibration sources into the instrument. The PCS will allow the instrument to point at specific targets on the ground, such as cities, to take local measurements of carbon dioxide emissions from urban areas.
GMV is responsible for designing, implementing and quality assuring the algorithms and operational processors for a number of the carbon dioxide data products. The operational processors convert the raw science data generated by the sensing instrument on the satellite into values that can then be used to form climate datasets.
GMV is also responsible for ensuring the operational processors for this mission can integrate with the processing infrastructure of mission partner, the French Space Agency (CNES) as well as with those of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).
Drawing on world-leading expertise from the National Centre for Earth Observation at the universities of Edinburgh (Professor Paul Palmer) and Leicester (Dr. Robert Parker), the MicroCarb Science team will translate atmospheric carbon dioxide observation into maps that show carbon emissions and uptake (carbon sources and sinks). The work will fundamentally improve current understanding of the carbon cycle and help pave the way towards a measurement verification system to monitor carbon emissions from human activities and natural processes.
The UK experts are part of a greenhouse gas team at the National Centre for Earth Observation, a UKRI-NERC research centre which provides the UK with world-leading, national capability in Earth Observation data for climate and environmental change; Professor Paul Palmer is the UK and NCEO Lead.